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I. SUMMARY

In this report we summarize our accomplishments in the research program

presently supported by Grant AFOSR-82-0258 over the period from July 1. 1982

to September 30. 1987. with primary emphasis on the accomplishments from

July 1. 1986 to September 30, 1987. The basic scope of this program is the

analysis, estimation, and control of complex systems with particular emphasis

on (a) the development of asymptotic methods and theories for nearly singular

systems; (b) the investigation of theoretical questions related to singular

systems; and (c) the analysis of complex systems subject to or characterized

by sequences of discrete events. These three topics are described in the next

three sections of this report. A full list of publications supported by Grant

AFOSR-82-0258 is also included.

The principal investigator for this effort is Professor Alan S. Willsky,

and Professor George C. Verghese is co-principal investigator. Professors

Willsky and Verghese were assisted by several graduate research assistants as

well as additional thesis students not requiring stipend or tuition support

from this grant. The list of 47 publications includes 14 papers that have

appeared or have been submitted to journals, 9 journal papers presently in

preparation, 14 papers presented at conferences, 1 S.B. thesis, 3 S.M. theses,

and 6 Doctoral theses. In addition. Prof. Willsky and Verghese have been

invited to give a number of lectures on the results of these efforts including

Prof. Willsky's featured invited presentation at the August 1986 SIAM

Conference on Linear Algebra in Signals. Systems and Control.
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II. ASYMPTOTIC ANALYSIS FOR PERTURBED SYSTEMS

Our previous research in this general area has produced a number of

important results and directions for further research. In this subsection we

review the basic ideas behind our work which is documented in detail in1 [1-4,

7. 9. 11-13, 16, 20-21, 25-26, 30-32, 34-37. 44 and 47].

The model that has been the focus of much of our attention is the

perturbed linear system

x(t) = A(a)x(t) (2.1)

where A(e) is analytic in a at a = 0. If. furthermore, ACe) loses rank at

= 0. (2.1) represents a singularly perturbed system that may display

dynamics at several time scales. Such models arise in describing complex

interconnected systems with weak couplings, "stiff" systems with time

constants ranging over several orders of magnitude, and finite-state Markov

processes (FSMP's) with rare transitions. In this latter case A(e) is an

infinitessimally stochastic matrix (i.e., column sums are zero and

off-diagonal terms are nonnegative) and x(t) is the vector of state

probabilities.

Our earliest work [1, 2. 4] on analyzing (2.1) used results on

perturbations of linear operators [Kato 1982] to develop a general approach to

determining if (2.1) has well-behaved time scale structures and, if so. to

1In this report we refer to publications supported by AFOSR by number, e.g.
[8]. References to other work are included in a second list and are referred
to by author and year. e.g. [Kato 1982].
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S a

construct a multiple time scale approximation. In the case of FSMP's this

work made clear the connection with stochastically discontinuous FSMP's and

provided a general result on hierarchical aggregation of perturbed FSMP's.

The basic idea behind the approach in [1. 2. 4] is an examination of the

perturbed eigenstructure of (2.1). Specifically, let PO(e) denote the

projection onto the subspace spanned by the eigenvectors and generalized

eigenvectors corresponding to eigenvalues of A(e) that converge to 0 as e I 0.

Then let

Ai(e) = Po(e)A(e)/e = PO(e)A(e)Po(e)/e (2.2)

As discussed in [1, 2. 4]. A1 (e) is analytic at e = 0 if and only if A(O) has

semisimple null-structure (SSNS). In this case the process can be iterated to

produced A2(6),A 3 (e), etc. If this procedure can be taken to completion, A(e)

is said to have multiple semisimple null-structure (MSSNS), and if

A(O).A 1 (O),A 2 (0) .... are all semistable (i.e.. all eigenvalues strictly in the

left-half plane except for possible semisimple zero eigenvalues), A(e) is said

to satisfy the multiple semistability (lSST) condition. In this case the

dynamics in (2.1) can be uniformly approximated by A(O).eA1 (O) .... in the sense

that

lim sup II exp{A(e)t} - eA(O)t eAi(O)Ct eA2(O) 2 t... 11 = 0 (2.3)
61O t O

Furthermore, if A(e) is infinitessimally stochastic, it is possible after the

fact to represent each successive time scale in (2.3) in terms of an Li
:1

aggregated version of the FSMP at the preceding time scale.

4 C . , . . , . . .,
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While these results are quite general, the price that apparently is paid

for this generality is a significant increase in complexity and a

corresponding loss of simple interpretation when compared to other results

developed for restricted classes of systems. In particular, the method in [1,

2, 4] requires the computation of the entire 6-dependent projection PO(e),

even though the ultimate objective, as shown in (2.3), is to discard all but

the critical e-dependencies (as embodied in the matrices

A(O),A 1 (O),6
2 A2 (0) .... ). Consequently a key thrust of our subsequent

research has been to provide a bridge between our general results and previous

simpler ones in order both to develop alternate, simpler procedures and to

pinpoint the precise causes of increased complexity in the general case.

In [7, 9 11-13. 20-21, 26], we have exposed the importance of the

invariant factors of A(&). viewed as a matrix over the ring of functions of 6

analytic at e = 0. Specifically, consider the Smith decomposition of A(e):

A(e) = P(e)D(a)Q(&) (2.4)

where IP(O)IIQ(O)J $0 and

k1  k

D(a) = diag(a . nl) (2.5)
ki

where the e are the invariant factors of A(e). Then, as shown in [20]. the

time-scale analysis of A(e) is equivalent to that for D(e)A where A is the

a-independent matrix Q(O)P(O). In taking this step we have discarded a

significant number of 6-dependent terms and have put the system into an

explicit form that allows us to make direct contact with previous results. In

particular, the time scales of the system, if they exist, are precisely

determined by the invariant factors, and the MSSNS and MSST conditions can be

5
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directly related to the properties of a sequence of successive Schur

complements of A. This approach also allows us to make a stronger and more

precise statement of the main results in [1] involving in particular the

notion of a strong time scale decomposition.

These results prompted additional research on the relationship between

the invariant factor structure and eigenstructure of A(e). In particular, in

[9. 11 21] we show that MSSNS is equivalent to the orders of the eigenvalues

equalling those of the invariant factors. Going one step farther, note that

the gcd of all minors of A(a) of various orders determine the invariant

factors of A(e), while the sums of principal minors of each order specify the

characteristic polynomial of A(a) and therefore the orders of the eigenvalues.

From this observation we find that MSSNS is equivalent to a particular

consistency condition among these integer orders together with a

"non-cancellation" condition that guarantees that the leading terms of

principal minors of particular orders are not canceled when they are summed.

These conditions also suggest a related line of investigation for which

we have some initial results [9, 12 26]. namely the use of amplitude scaling

to modify non-principal minors of A(e) so that the MSSNS condition is

satisfied. Consider, for example, the following system matrix that does not

have MSSNS:

A(e) - .](2.6)

Note that the reason that (2.3) cannot be satisfied is that the (1,2)-element

of exp{A(e)t} is te-et which has a maximal value of order 1/e. Consider,

6



however, a similarity transformation that scales the state variables

z(t) = diag(el) x(t) (2.7)

The transformed system matrix in this case is

6- -:) (2.8)-°0 6
which does have MSSNS. The procedure we have developed identifies diagonal

scalings for a restricted class of system matrices by identifying those minors

of A(e) that are the reason for the violation of the MSSNS condition. We

expect that there is a generalization of this procedure that is applicable to

a far larger class of systems. Indeed. we have seen how our procedure can be

adapted to recover the special cheap control and high-gain scaling results in

[Sannuti 1983]. but a more general result remains for the future.

In [16, 25, 30-32, 36-37. 44, 47] we describe a series of results that

have arisen out of a second aspect of our efforts to simplify and interpret

the results in [1, 2, 4]. in this case for FSMP's. As discussed in [16], this

line of research was motivated by a desire to understand the relationship of

the method in [1, 2, 4] to simpler results such as [Courtois 1977].

Specifically, for an FSMP, the eigenprojection Po(e) evaluated at e = 0 is the

ergodic projection of the FSMP corresponding to the matrix A(O). Instead of

A1 (e) in (2.2) consider

F1 (e) = Po(O)A(e)Po(O)/a (2.9)

Note that since P0 (0) is an ergodic projection it can be written as

P0 (0) = UV (2.10)

where each column of U is the vector of ergodic probabilities for a single

ergodic class of A(O). The matrix V is a membership matrix, with each row

specifying which states are in a particular ergodic class. From this one can

7



deduce that VU = I and that

exp{F 1 (e)t) = U exp{Cl(e)t)V (2.11)

where

GI(e) = VA(e)U/e (2.12)

corresponds to an aggregated FSMP with one state corresponding to each ergodic

class of the original unperturbed FSMP (characterized by A(O)). The rates

between these aggregates, as specified by (2.12), represent average transition

races from states in one ergodic class to states in another, with the

averaging done using the ergodic probabilities in U.

As pointed out in [16], the procedure just described breaks down if the

original FSMP has implicit time scale behavior resulting from the existence of

critical seouences of rare transitions from one ergodic class of A(O) to

another. Such sequences, which arise naturally in problems such as

reliability analysis of complex, fault-tolerant systems and queueing analysis

of data communication networks, correspond to the existence of transient

states in A(O), and transitions through such states are completely missed by

the averaging in (2.12). By keeping all e-dependencies, as in (2.2), we avoid

this problem but with a considerable increase in complexity. In contrast, in

[16] we describe a method for computing only those e-dependent terms that are

critical in describing longer-term behavior. Specifically, this procedure

involves replacing the "membership matrix" V in (2.11) by an E-dependent

membership matrix. The 6-dependencies in V(e) account for the fact that a

transient state of A(O) may in fact provide a bridge between ergodic classes

of A(O) at slower time scales, and thus the "membership" of this transient

state must be split in an e-dependent way among the classes it couples.

S



There are several important features of this result. First, the

computations at each successive time scale are performed on increasingly

aggregated processes as in [Courtois 1977] but unlike [1]. Secondly, the

result has a strong graph-theoretic flavor in which one can work solely with

the integer orders of the transition rates of A(&) to determine what the

aggregated classes will be and what the structures of V(e) will be. That is,

using only simple integer arithmetic we can determine which elements of U and

V(e) are nonzero and what the orders are of the nonzero elements of V(6),

thereby making the structural computations extremely robust. Finally, a key

technical fact used extensively in this development is another

"no-cancellation condition", namely the fact that all transition rates between

states are nonnegative. The flows of probability mass along two different

paths from one state to another therefore add, so that leading-order terms are

never canceled.

We feel that the results in [16] represent an important breakthrough, and

in fact they have already led to a number of additional results. In

particular, we have developed [25, 30] a corresponding aggregation procedure

for discrete-time FSMP's. The interesting aspect of this result is that all

time scales other than the fastest are described by continuous-time FSMP's.

Also, we have developed [25, 31] aggregation results for a large class of

continuous-time finite-state semi-Markov processes that go well beyond any

other results in the literature. In particular, in our work we have allowed

both the transition probabilities and the holding time distributions to be

perturbed. By restricting attention to distributions with rational Laplace

transforms we are able to use the so-called method of stages to use our FSMP

9



result in order to prove the validity of a hierarchial approximation.

Important aspects of this work are (1) the continued use of a no-cancellation

condition although the "flow" rates arising from the method of stages are not

guaranteed to be positive or even real; (2) the fact that the form of the

holding time distribution may lead to a non-transient state at one time scale

being split between two aggregates at the next scale -- a form of behavior

that cannot occur in an FSMP.

There are three other extensions of this work on which some results have

been obtained. In [25, 32, 44] we present some initial results on applying

our FSMP results to analyze the reliability of a fault-tolerant system that

incorporates an automatic fault detection and reconfiguration system. An

important question for such systems is the effect fault detection performance

characteristics such as false alarms, missed alarms, and detection delays have

on overall reliability. Variations in such parameters can be viewed as

changes in the orders of particular transition rates in the FSMP describing

the overall system. In [25. 32, 44] we examine a relatively simple problem of

this type. Using the fact that our results allow us to identify time scale

structure by examination of integer orders of transition rates, we identify

particular orders for certain of these rates that lead to overall reliability

(as measured by the order of the transition rate from an aggregate state

representing "working" to one representing "not working") of maximal order.

The second extension that we have considered is to extend the method in

[16] to broader classes of systems of the form of (2.1). In particular, the

no-cancellation condition and its flow interpretation suggest possible

generalizations. The one we have begun to pursue [25, 36] is to the class of

10



positive systems. i.e., systems for which x(t) is guaranteed to stay in the

positive orthant if it begins there. Positive systems can also be represented

in a graphical manner, and while the structure of these systems can be far

richer than that for FSMP's, we have been able to obtain some results already.

In particular, an extension to compartmental models has been obtained. Also,

note that not all positive systems will satisfy the MSSNS condition (for

example, (2.6) describes a positive system). However, it is possible to

determine if a positive system has MSSNS by simple graphical means.

The third extension we have addressed [47] has been motivated by the

analysis of flexible manufacturing or inspection and testing systems. In part

the work in [47] is a direct application of the methods of [16, 25, 32] to

models describing such applications and in particular to the identification of

the relationships among certain rates that lead to particular aggregated

structures. These applications did, however, lead to one new theoretical

result motivated by the fact that in many applications key variables often

take the form of counts of particular sets of transitions (such as those

modeling completion of a part or of an inspection). An important observation

is that at fast enough time scales, these transitions occur as discrete

events. However, at slower scales, the states involved in these transitions

may be aggregated, and thus the count of "internal transitions" among states

contained in an aggregate state must be modeled as a random variable. An

asymptotically accurate method for doing this, building in part on results

from renewal theory, is developed in [47]. We believe these results will be

of significant value in the investigation of control problems for such

processes.

11



The final portion of research in this area has dealt with the analysis of

control problems associated with the model

x(t) = A(E)x(t) + B(e)u(t) (2.13)

In [9, 20] we present some results on time scale modification. i.e.. on

modifying the invariant factors of A(e) by application of feedback of the form

u(t) = K(&)x(t) (2.14)

In our more recent work in this area [34, 35] we have focused on a detailed

examination of the controllability structure of (2.13) and its discrete-time

counterpart. The key to this analysis is the Smith decomposition of the

controllability matrix

T(e) = [B(e) A(e)B(e): ..... :An-l(F)B(6)] (2.15)

The invariant factors of this matrix determine the "orders of controllability"

of the system, and the Smith decomposition itself allows us to identify a
0

standard form for such systems: order e - controllable states are those that

1
are in the range of C(0), order e - controllable states are those that are

either driven directly by u(t) through an order e gain in B(e) or have an
0

order e coupling with the order 6 - controllable states -- i.e.,

1 = All(e)xl(t) + Bl(e)u(t) + Ali(6)xi(t)

Q 2

2 = A22 (6)x2 (t) + eA2 1(6)x1 (e) + eB2(E)u(t) + A2 i(6)xi(t)

i03

x3 =A 3 3 (f)x3 (t) + eA3 2 x2 (6) + + 2B3 (6)u(t) + A 3 i(6)xi(t)

Q 4

(2.16)

These results allow us to develop asymptotic methods for pole placement

via high-gain feedback. In addition, we have some initial results relating

12
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the invariant structure of (2.1) with Willems notions of almost-invariance for

unperturbed systems [Willems 1981, 1982].

13
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III. SINGULAR SYSTEMS

Our recent research in this area, as documented in [17. 19, 22, 24,

27-29, 40-43], has focused, for the most part, on the class of two-Roint

boundary-value descriptor systems (TPBVDS's):

Ex(k+l) = Ax(k) + Bu(k) (3.1)

v = ViX(O) = Vfx(N) (3.2)

Note that E and A may both be singular, so that (3.1) allows one to model a

large class of noncausal systems. For this reason, it is natural to analyze

this model together with the general boundary condition (3.2). Models of this

type and their extension to more than one independent variable frequently

arise in the description of spatial or space-time phenomena. Examples range

from discretized versions of equations describing electromagnetic fields or

gravitational anomalies, to models for distributed systems such as flexible

structures, to models that are used as the basis for solving problems in

computational vision such as motion estimation and shape from shading (see, in

particular, [Roug~e 1987] in which the connection between this last class of

problems and boundary-value models is made explicit).

Motivated by the wealth of potential signal and image processing

applications, we began our investigation in this area with the study of

estimation problems for (3.1), (3.2) and also for a particular class of 2-D

models (i.e., models with two independent variables) [17, 19. 22]. In

particular, in [19] we analyze the problem of estimating x(k) in (3.1). (3.2)

14



given the interior observations

y(k) = Cx(k) + r(k) . ke[l.K-1] (3.3)

and the boundary measurements

Yb = Wix(O) + Wfx(N) + rb (3.4)

Using the method of complementary models (see [19]. [Adams, et al. 1984] and

[Weinert and Desai. 1981]) we derived a generalized Hamiltonian form for the

optimal estimator:

[E -BQB ] x(k+l) 1 [ A 0 x(k) [ 0

0 -A' J (k+l) -C'R- 1C -E X(k) C'R-lI y(k)

(3.5)

with appropriate boundary conditions.

Two points of importance in this specification are that (a) the optimal

estimator itself is a TPBVDS; and (b) in the standard causal system case

(E = Vi =I, Vf = 0) (3.5) reduces to the usual Hamiltonian form for the

optimal smoother. The first point raises the question of finding methods for

solving these implicit equations, while the latter suggests a possible

approach to their solution. In particular, as discussed in [Kailath and

Ljung, 1982] and [Adams, et al. 1984]. in the causal case it is possible to

block-diagonalize or triangularize the Hamiltonian dynamics, yielding a

variety of smoothing algorithms including those of Mayne and Fraser and of

Rauch, Tung. and Striebel. The specification of the tranformations needed to

obtain such algorithms leads directly to Riccati equations, whose properties

can in turn be directly related to properties of the original system (e.g.

reachability and observability) and of the estimator (e.g. its error

covariance and stability).

15



Motivated by this line of research for causal systems, we began an

analogous investigation for the estimator (3.5) for a TPBVDS. As described in

[19]. the possible singularity of E and A makes this a more complex problem.

In particular, the approach that exactly parallels one used in the causal case

does not work for many TPBVDS's. On the other hand, we have discovered two

new generalized Riccati equations

0 = A'(Ee- E' + BQB')- A + C'R 1C (3.6)

P = A(E'0-IE + C'R- 1C)-IA* + BQB' (3.7)

which, if solutions exist, then provide the basis for block diagonalization of

(3.5). In [40, 41] we present some results on the existence and uniqueness of

solutions to such equations and their relation to properties of reachability,

observability, and stability. To do this, of course, it is necessary to

define and study system-theoretic concepts such as these for TDBVDSs, and it

was this necessity that led to the extensive set of results described in

[24. 27-29. 40, 42. 43] and which we now discuss.

In [24, 27-29, 40, 42, 43] we describe the results of our research to

date in developing a system theory for TPBVDS's. 0,r line of investigation

has been strongly motivated by the work of Krener [1980, 1985e., 1985b] who has

investigated the class of standard (i.e, not descriptor) continuous-time

boundary-value systems

x(t) = Ax(t) + Bu(t) (3.8)

v = Vix(O) + Vfx(T) (3.9)

Part of our work has paralleled that of Krener, with notable differences

because of the potential singularity of both E and A. In addition, our

interest in the smoothing problem and in particular in its efficient solution

16



has led us to investigate other topics such as stability and recursive

solutions for TPBVDS's.

One of the basic results derived in [27] and used heavily throughout our

work is the following. Suppose that (zE-A) is a regular pencil (i.e., its

determinant is not identically zero). Then it is possible to transform (3.1).

(3.2) so that E and A commute. Well-posedness then is equivalent to the

invertibility of (ViEN + VfA ). In this case, we can always put the system in

normlized form, so that

ViE + VfA =1 (3.10)

aE + PA = I (3.11)

for some pair of real numbers a and P. As discussed in [27]. equation (3.11)

greatly simplifies many results connected with TPBVDS's. For example, there

is a much simpler statement of a generalized Cayley-Hamilton theorem for E and

A in this case, and this in turn leads to simpler reachability and

observability results than were available previously.

As in Krener's development, we have explored two notions of recursion for

TPBVDS's, namely inward from and outward toward the boundaries, and for each

there are associated concepts of reachability and observability. In

particular, in [273 we define an inward process zi(k.L ) , k ( L. which plays a

role similar to the state of a causal system in that it represents the

boundary condition (rather than initial condition) propogated inward to k and

C from 0 and N using the intervening input values (i.e., u(j) for Oj<k,

Lj<N). The outward process z (kt). on the other hand, summarizes all that

one needs to know about the input between k and C in order to determine x

outside the interval. While these processes are similar in spirit to those of

17



Krener, the possible singularity of E and A leads to some differences and some

additional complexity. For example, in Krener's context z represents the

difference between the actual value of x at one end of an interval and the

value predicted for x at that point given x at the other end of the interval

and assuming zero input inside the interval. In our context, we cannot in

general predict in either direction, and therefore a modified definition must

be developed.

As indicated previously, there are two pairs of notions of reachability

and observability. Strong reachability refers to the ability to drive z (k,L)

to any desired value, while weak reachability deals with zi(kL). Strong

observability, on the other hand, refers to the ability to determine z.(k,t)

based on observations of u and y between k and L, while weak observability

corresponds to our ability to determine z (kL) based on knowledge of u and y

outside the interval [k,t]. In [27] we derive conditions for each of these

properties and in particular provide justification for the terminology

adopted. In addition, we also describe several methods for the efficient

solution of TPBVDS's. In particular, one method, which is similar in spirit

to two-filter solutions to smoothing problems, involves the simultaneous

outward-recursive computation of z and inward-recursive computation of zi.

The solution x can then be computed from these quantities. A second solution

method, similar in form to the serial structure of the Rauch-Tung-Striebel

algorithm, consists first of the outward-recursive computation of z . followed

by the direct inward-recursive computation of x.

As is the case for causal systems, many of the results for TPBVDS's are

simplified and can be carried farther for the class of stationary TPBVDS's,
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i.e.. systems as in (3.1). (3.2) but for which the effect u(k) has on x(L) is

a function only of t - k. In contrast to the causal case, (3.1). (3.2) is not

stationary for arbitrary choices of the constant matrices A. B, Vi, and Vf.

In [24, 28] we define the class of stationary TPBVDS's as the set of models in

(3.1). (3.2) for which Vi and Vf each commute with E and A and for which

ker(En) C ker(Vi) , ker(An) C ker (Vf) (3.12)

(where n = dim x). As discussed in [24. 28] the technical condition (3.12)

which can always be imposed with a modification in system behavior only near

the boundaries (and is always true if E and A are invertible) provides some

additional regularity and, in particular, allows us to view (3.1), (3.2) as

the restriction of a TPBVDS defined on a larger interval. This definition of

stationarity also allows us to obtain simplified conditions for weak

reachability and observability (the conditions for strong reachability and

observability are simple even for nonstationary systems) and to characterize

minimal realizations in a fashion that is exactly analogous to Krener's

results. In particular, a stationary TPBVDS is a minimal such realization of

a given weighting pattern if and only if the system is weakly reachable and

observable and the kernel of the strong observability matrix (i.e., the set of

"strongly unobservable states") is contained in the range of the strong

reachability matrix (i.e., the set of "strongly reachable states"). Also, as

in [Krener 1985a], two minimal realizations need not be related only by a

similarity transformation, thanks to some flexibility that may exist in the

choice of Vi and Vf.

In addition to the result just cited, it is also possible to carry out

additional investigations for stationary TPBVDS's. In particular, in [24, 29]
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we consider two definitions of stability for stationary TPBVDS's. Perhaps the

more interesting of the two requires the boundary value v to have an

asymptotically vanishing effect on the process x at points .ar from the

boundary as the boundaries recede toward ± -. (Compare this with the notion

of stability for causal systems in which we require the effect of the initial

conditions to vanish asymptotically.) The conditions for a stationary TPBVDS

to be stable involve both the eigenstructure of (E,A} and the structure of Vi

and V In particular, it is always possible to perform transformations on

(3.1) so that

I 0 0 Af 0 0
E = 0 Ab 0 A = 0 1 0 (3.13)

0 0 0 0 U

(this is a variation on the Kronecker form for a regular pencil [Van Dooren,

1979]), where Af and Ab both have all their eigenvalues inside the unit circle

and U has all its eigenvalues on the unit circle. In this case the conditions

of stationarity require that Vi. Vf also be block diagonal, i.e.,

VI = diag(VllV i2,V13 ) , Vf = diag(VflVf2,Vf3 ) (3.14)

Stability, in the sense just defined, then is equivalent to the absence of the

third blocks in (3.13), (3.14) (i.e., IzE-AI must be nonzero on the unit

circle) together with the invertibility of Vil and V f2 Roughly speaking, the

first block of (3.13) corresponds to modes that have stable propogation as k

increases and the invertibility of Vil requires that all of these modes be

constrained at k = 0. Note that this does not mean that these modes are

causal since Vfl need not be zero. A similar interpretation can be given for

the second block.
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Another topic investigated in [24, 29] is stochastic stationarity.

Specifically, consider a stationary TPBVDS (3.1), (3.2) where v is a zero-mean

random vector with covariance Q and u(k) is a zero-mean white noise sequence,

independent of v, with variance I. This system is stochastically stationary

-- i.e., the correlation matrix 9[x(k)x()'] depends only on k - t -- if and

only if Q satisfies the generalized Lyapunov equation

EQE' - AQA' = ViBB'Vi - VfSB'V (3.15)

The constant covariance, P. of x(k) in this case satisfies a second

generalized Lyapunov equation

EPE' - APA' = V.ENBB'(ViEN) ' - vfANBB'(VfEN) (3.16)

Also, in this case it is possible to derive a second-order matrix TPBVDS

(analogous to one derived by Krener in his study) whose solution yields the

correlation matrix for x.

Finally, as in the causal case, there are results relating Lyapunov

equations, stochastic stationarity, and stability, although at present the

theory is not complete. In the causal case we know that if a system is

reachable from the noise, then stability is equivalent to the existence of a

positive definite solution to the system's Lyapunov equation, and this

solution represents the initial state covariance that leads to a stationary

state process. For TPBVDS, stability is equivalent to the existence of a

positive definite solution to (3.16) if the system is strongly reachable.

However, even in this case, there may or may not exist a Q satisfying (3.15).

so the relationship of stability and stochastic stationarity is not as simple

as in the causal case. In fact, if the system is only weakly reachable, it is

possible for x to be stochastically stationary even if the system is not

stable. A complete clarification of these points remains for the future.
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IV. SYSTEMS SUBJECT TO DISCRErE EVENTS

The general theme of this portion of our research has been the

development of estimation and detection algorithms for several classes of

systems subject to discrete events. The area of discrete-event dynamics is

one that is presently undergoing a dramatic increase in attention by the

research community, as it has been recognized that many estimation and control

problems for systems and processes of great complexity have a definite

discrete flavor. Major questions that arise in this context include: (1)

what kinds of models and theories should be developed? and (2) how do we

develop methods capable of dealing with the complexity of many of these

problems? This latter question provided the principal motivation for the

research described in Section II on multiple time scale/aggregation methods

for certain classes of discrete-state processes.

Our work to date in this last portion of our research has been motivated

by the first question. Specifically, the concept of a system with discrete

events is so broad, it is possible to imagine a large number of alternate

mathematical settings that might be candidates for exploration. Consequently.

one must look carefully at the potential applications in order to choose

meaningful formulations. This has been our approach .nd in particular we have

focused to date on two problem areas and have recently initiated efforts in a

third. The first of these, failure detection in dynamic systems, is perhaps

the simplest discrete-event problem, as one is interested in detecting

individual, isolated events in ordinarily continuously-evolving systems. Our
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second research direction, the development of suboptimal distributed

estimation algorithms for coupled finite-state processes with applications in

electrocardiogram (EOG) analysis, involves considerably more complex event

tracking problems and exposes a number of important issues in the monitoring

of complex discrete-event processes. Finally, the third area in which we have

begun research is the development of system-theoretic concepts for

discrete-event systems described by nondeterministic models of the type

introduced by Wonham (see, for example, [Vaz and Wonham 1986]).

Our work in failure detection has had three components described in [38],

[33]. [14]. and [23]. One of the major problems in practical failure

detection is robustness. Indeed one can argue that this problem is even more

challenging in the failure detection context than in the control context since

in the failure detection problem one is typically trying to generate signals

that are maximally sensitive to some effects (failures) and minimally

sensitive to others (model uncertainties). This issue motivated the research

described in [38] on the generation of robust redundancy relations for failure

detection.

A redundancy relation or Rarity vector for a perfectly known linear

system

x(k+l) = Ax(k) + Bu(k) (4.1)

y(k) = Cx(k) + Du(k) (4.2)

is a vector v so that

C

T CA
v =0 (4.3)

CA
s
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for some s 0. As described in [38] one can use v to construct a linear

combination of the (s + 1) most recent values of the output and input that

will be identically zero if (4.1). (4.2) are precisely correct. Such parity

checks can then be used to detect discrepancies between the actual data and

that predicted by the model.

Clearly any model uncertainty or noise will contribute to this

discrepancy, reducing the value of a parity check for discriminating between

normal and failed behavior. In [38] we investigate the problem of maximizing

this discrimination capability taking uncertainty and noise into account. For

example, suppose that the parameters of the A. B. C, D are uncertain and in

particular can take on one of N sets of values indexed by i. Then a criterion

capturing the desire to keep the left-hand side of (4.3) small over all

possible model parameters is the following:

N

j = j nvTZzii12  (4.4)
i=l

where

C.1
C.Aiz. = (4.5)

1

11 -

As discussed in [38], minimizing (4.4), or its generalization to consider a

set of several orthogonal parity vectors, can be accomplished through a

singular value decomposition of

z [zz (46)

Specifically the singular values of Z indicate the level of robustness of

corresponding parity checks. For example, the left singular vector

24

.,. e - - -



corresponding to the smallest singular value of Z is the most robust parity

check. Several important variations on this problem are also considered in

[38]. In particular, it is possible to define a statistical version of (4.4)

in order to incorporate both the effects of noise and the relative magnitude

of the state variables as measured by the state covariance. Also, it is

possible to formulate a similar problem in which we want the parity checks to

be large when a failure occurs:

N 2N

J = IvTZiI,2 
- 1 ,,vTZi,,2  (4.7)

i=l i=N+l

where the values of the index i from N + 1 through 2N correspond to the

uncertain system dynamics when a particular failure has occured.

While the results in [38] are of significance, they fall short of the

complete robust failure detection theory we would like to develop.

Specifically, the discrete, parametric specification of model uncertainty (the

discrete aspect of which can be relaxed) is restrictive. In particular it

would be desirable to have a robustness theory that can handle model

uncertainty specified in terms of frequency response error bounds. Also,

there is the issue of designing the actual failure detection residual

generation system. In particular, the method in [38] determines a set of

parity relations, which, as discussed in [Chow and Willsky 1984], can then be

used in a number of ways. For example, one method of residual generation

consists of simply computing the finite window parity checks determined by

these relations. For a variety of reasons, such as noise rejection and

enhancement of failure effects for detection and discrimination from other

failures, it may be preferable to generate "closed-loop" residuals based on
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the dynamic models specified by the parity relations -- i.e. to design Kalman

filters or observers based on the dynamic relationships specified by the

parity relations.

These observations provided the motivation for the investigation

described in [33]. While this paper does not deal with the robustness issue.

it does establish a linear system-theoretic framework for the design of

failure detection systems and in particular makes clear the connections with

the geometric and frequency domain theories of linear systems. The specific

formulation used in [33] is the following

k

x(t) = Ax(t) + Bu(t) + Limi(t) (4.8)

i=l

Y(t) = Cx(t) (4.9)

where the matrix L. models the way in which the ith failure mode affects the1

dynamics and m.(t) is an arbitrary waveform modeling the actual ith failure

time history (see [33] for examples of how various sensor and actuator

failures can be modeled in this way). The objective then is to design a

residual generation system

w(t) Fw(t) - Ey(t) + Gu(t) (4.10)

r.(t) = Miw(t) - Hiy(t) + Kiu(t) , i = 1,....p (4.11)

so that ri(t) E 0 Vi if there is no failure and also so that the jth failure

mode affects only a subset of the residual vectors, specifically rk(t). kdXL.

where the coding sets fl C {1,.l..,p) are distinct, i.e. Q.i X Q2. for i X j. If

this can be accomplished, then failure detection and identification reduces to

a determination of the set of residuals that deviate significantly from zero.
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Note that for this approach to be effective, we would also like to make

sure that rk(t). kedi actually dg deviate from zero when the jth failure

occurs. This is equivalent to the invertibility of the systems defined from

m.(t) as input to the set of signals rk(t). kEA2. as output. As discussed in'

[33], this is too restrictive a condition, and we settle for the less

restrictive condition of input observability, i.e. that the columns of the

transfer matrix from m.(t) to the vector (rk(t). kej. are linearly

independent over the field of real numbers (see [33] for a discussion). Also,

as developed in the paper, the basic problem on which all of the analysis

builds is the fundamental problem in residual generation (FPRG).

Specifically, suppose there are only two failure modes in (4.8). i.e. k = 2.

The FPRG is to design a residual generator

w(t) = Fw(t) - Ey(t) + Gu(t) (4.12)

r(t) = Mw(t) - Hy(t) + Ku(t) (4.13)

so that the map from (u. m2 ) to r is zero and so that the map from ml to r is

input invertible. There are some strong similarities between this problem and

feedback design problems such as decoupling, so it is not suprising that duals

of familiar constructs in geometric system theory play an important role. In

particular, the concept of an unobservability subsoace (see [33]) is crucial.

In particular, the FPRG has a solution if and only if the intersection of the

range of L and the smallest unobservability subspace containing the range of

L2 is {}. Using this basic result, several other problems are solved in

[33]. including the problem of designing residual generators capable of

distinguishing a set of failures under the restrictive assumption that

simultaneous failures may occur and the less restrictive situation in which
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only a single failure can occur. In addition, frequency domain

interpretations of these results are given. It is important to note that

these results are not simple dualizations of existing results in geometric

system theory.

As mentioned previously, the other aspect of our work in discrete-event

systems, which is described in [8]. [10], [15], and [18], has been on the

development of distributed estimation algorithms for a class of coupled

finite-state processes. The original motivation for this investigation was to

develop a class of event-based models that is appropriate for describing

cardiac behavior and for serving as the basis for ECC rhythm analysis. This

class of distributed models, however, has much broader potential applicability

to other distributed monitoring and situation assessment problems.

As discussed in [15] and [18], each portion of the heart can be viewed as

cycling through a set of discrete states corresponding to the electrical

events that result in muscle contraction, recovery, and rest. The timing of

these events is occrssionally and dramatically affected by the occurrence of

particular events in other portions of the heart. This structure led us to

develop a model structure consisting of a set of N interacting subprocesses

each characterized by a state x. taking values in a finite set. The overall

process, with state {x1. . } is an FSMP possessing, however, a great deal

of structure. In particular, conditioned on the present values of all of the

subprocesses, the transition behavior of each subprocess is independent of

that of the others. Furthermore, while the transition probabilities of

subprocess i depend on the values of {xIj 9 i), there are far fewer values

for these probabilities than there are possible sets of states of the other
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processes. That is. the transition probabilities of subprocess i depend on an

interaction variable hi(xj j X i) that takes on only a few values. This

allows us to model the presence of strong interactions of only a few distinct

types among the subsystems, which is a fundamental characteristic of many

large--scale systems.

One important aspect of the EOC and many other problems is that the event

state is not observed directly. Rather one observes signals that can be

viewed as an en4ing of particular key transitions in one or more of the

subprocesses (in the EOG case these transitions correspond to the initiation

of muscular contractions and recoveries resulting in the waveforms seen in the

ECG). Consequently, we see that the problem is fundamentally one of finite

state estimation or decoding.

A fundamental premise in [18] is that the optimal estimator cannot be

implemented (for computational reasons as in EOG analysis or for reasons of

geographic separation as in distributed battle management), and that one

wishes to design a distributed estimator consisting of interacting processes

each responsible for estimating the state of a single subprocess. There are

several critical questions that must be dealt with in designing an estimator

with this structure. In particular, the processor for a specific subprocess

must have some, hopefully reduced, model for the remainder of the system.

Also, there typically is a need for processors to exchange information, and

the questions that arise are what information should be exchanged and how

should the quality of this information be modeled. In [18] we describe one

suboptimal but systematic way in which to deal with each of these issues. In

particular, since the interaction variable h. has a set of values of low

1
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cardinality, we have developed a method for specifying an FSMP on this set

that approximates the behavior of h, (which is not an FSMP). Also, it is

natural for the other processes to provide processor i with an estimate of h.1

obtained from the state estimates of the other subprocesses. Since all of the

processors are dynamic systems themselves, it is essential that processor i

uses a dynamic model for the information it receives from the other

processors. Again, one systematic approach to this is described in [18].

Also, as discussed in [18]. there is the important issue of performance

analysis for such finite state estimators. It is argued that examination of

estimation errors at individual points in time is not- appropriate in this

case, as a small error in the timng of particular events, while yielding

large point-to-point errors may actually be of high quality when event

sequences are compared. Again one simple approach to capturing such a dynamic

error measure is described in [18] (see also [10]), but much more needs to be

done in this area.

Furthermore, the distributed nature of our ECX model, with its emphasis

on timing and control, has led us to investigate an alternate modeling

framework -- stochastic-timed Petri nets -- that offers some advantages in

terms of the compactness of the representation and the fact that timing and

structural aspects of the model can be described separately. The results of

this effort will be described in [40].

Finally there has been a flurry of research on discrete-event dynamic

systems modeled as finite state machines or as extended state machines in

which time and temporal logic can be incorporated (see, for example, [Vaz and

Wonham 1986]). In [45, 46] we present our initial research efforts in this
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area. In particular, we have developed a notion of stability for

nondeterministic automata and an associated notion of stabilizability when

control is included. We provide a procedure for determining if such a system

is stabilizable and for constructing stabilizing controllers. A second aspect

of our work is motivated by the clear need for aggregate models for such

systems if realistic applications are to be considered. In particular we have

developed the notion of a lask. consisting of a set of state transitions,

described controllers to implement individual tasks, and analyzed the joining

of these primitive controllers to implement sets of tasks. This provides the

basis for considering a higher-level description of a discrete-event system in

which transitions at the higher level correspond to the completion of tasks at

the lower level.
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